Car A has an acceleration of 2 m/s^2 due east and car B, 4 m/s^2 **Question 02** due north. What is the acceleration of car B with respect to car A?

It is a two dimensional motion. Therefore, Solution

$$\mathbf{a}_{BA}$$
 = acceleration of car B with respect to car A
= $\mathbf{a}_B - \mathbf{a}_A$

Here,

 $\mathbf{a}_B = \text{acceleration of car } B$ $= 4 \text{ m/s}^2 \text{ (due north)}$

and

 $\mathbf{a}_A = \text{acceleration of car } A$ $= 2 \text{ m/s}^2 \text{ (due east)}$

$$|\mathbf{a}_{BA}| = \sqrt{(4)^2 + (2)^2} = 2\sqrt{5} \text{ m/s}^2$$

 $\alpha = \tan^{-1} \left(\frac{4}{2}\right) = \tan^{-1} (2)$

and

Thus, \mathbf{a}_{BA} is $2\sqrt{5}$ m/s² at an angle of $\alpha = \tan^{-1}(2)$ from west towards north.

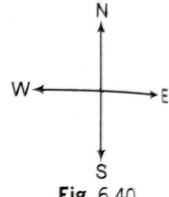


Fig. 6.40

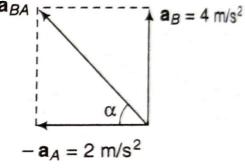


Fig. 6.41